Beton-zavod-ivanteevka.ru

БЕТОННЫЙ ЗАВОД "РБУ ИВАНТЕЕВКА"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Гиперпрессованный кирпич

Гиперпрессованный кирпич

Состав гиперпрессованного кирпича и технология производства

Смесь для изготовления гиперпрессованного кирпича включает в себя 8-15% цемента высокой марки, 2-7% железоокисных пигментов для окрашивания и 85-92% одного из видов основного сырья:

  • Известняк-ракушечник;
  • Тырса, доломит, мрамор, мергель;
  • Отсев от производства щебня;
  • Бой от производства керамического кирпича;
  • Различные отходы: от добычи и распила облицовочного камня, от обогащения каменного угля, медных и железных руд;
  • Доменные шлаки и многие другие материалы.

Гиперпрессование — способ формования изделия из увлажнённой смеси минеральных сыпучих материалов при сверхвысоком давлении. Прессующее воздействие приводит к столь сильному взаимному трению частиц, что между ними происходит не просто слипание, а сцепление на молекулярном уровне, т. е. когезия — притяжение, которое при нормальных условиях существует между молекулами внутри вещества, но никак не между молекулами разных веществ.

Частицы, по сути, свариваются друг с другом, и происходит это без применения высоких температур, как то при обжиге глиняного кирпича или сварке металлов. Поэтому полусухое гиперпрессование называют также холодной сваркой. В результате получается искусственный материал максимально близкий по текстуре, прочности, морозо- и влагостойкости к натуральному камню.

Просушивают отформованные изделия в пропарочной камере (8–10 ч. при 40-70 ºС) либо на складе, где кирпич созревает в течение 3-5 суток. Это позволяет набраться 50-70% марочной прочности, после чего кирпичи, если необходимо, рустируют (имитируют декоративные сколы) и отправляют на стройплощадку. Окончательную прочность гиперпрессованный кирпич добирает уже в кладке в течение 30 дней при условии плюсовой температуры.

Уникальность технологии заключается в получении высокоточного соответствия готового изделия проектным размерам. Отклонение может составить не более 0,5 мм (обычно в диапазоне 0,2-0,5), что впечатляюще превосходит показатели наиболее «точного» среди стеновых элементов силикатного кирпича с его ±2 мм.

Государственного стандарта, разработанного специально для гиперпрессованного кирпича, не существует, поэтому производители руководствуются техническими условиями на продукцию, получаемую гиперпрессованием, а также нормативами (касательно размеров и назначения) для глиняного кирпича:

  • ТУ 5741-021-00284753-99 «Материалы строительные гиперпрессованные»
  • ГОСТ 530-2007 «Кирпич и камень керамические. Общие технические условия»

Классификация

Кирпич гиперпрессованный имеет классифицирующие признаки, аналогичные двум другим видам кирпича — керамическому и силикатному:

  • по назначению — рядовые и лицевые (гладкие либо рельефные с тычка и/или ложка);
  • по конструкции — полнотелые и пустотелые (дырчатые и щелевые);
  • по форме — в виде правильного параллелепипеда (с острыми или закруглёнными углами) и фигурные.

Справка. Каждая пара одинаковых граней у кирпича имеет своё название: постель — самые большие (рабочие) плоскости; ложок — средние по величине грани (именно они остаются видимыми в готовой кладке с внутренней и наружной её стороны); тычок — торцевые грани кирпича.

Фигурные, или фасонные, кирпичи также могут быть подразделены по назначению: одни выполняют чисто декоративную функцию, другие совмещают её с практической — карнизные, угловые и пр. Рельефность облицовочного кирпича, называемая также сколом или «диким камнем», создаётся только на одной или двух гранях.

Из-за достаточно высокой стоимости применение строительного (рядового) кирпича оправдано при возведении сейсмоустойчивых зданий. В основном же изделия, полученные методом двустороннего гиперпрессования, служат великолепным облицовочным материалом, который кроме декоративного эффекта упрочняет конструкцию, защищает от повышенной влажности и других неблагоприятных воздействий.

Размеры кирпича Д×Ш×Т, мм:

  • Одинарный (1НФ) 250×120×65
  • Узкий (0,6НФ) 250×60×65

Не менее часто встречаются сочетание длины и толщины 230 и 65 мм с шириной 107, 100, 56 или 50 мм.

Характеристики

  • Прочность от 100 до 300-400 кг/см²
  • Двустороннее гиперпрессование обеспечивает равномерную прочность марок по прочности не ниже М100, а с применением цемента М500 — в пределах М250-М300.
  • Объемный вес 1900-2200 кг/м³
  • Теплопроводность 0,43-1,09 Вт/(м·°С)
  • Морозостойкость до 300 циклов
  • Марки от F30 до F300.
  • Водопоглощение 3-7%
  • Огнестойкость группа НГ (негорючий)
  • Стоимость полнотелого и пустотелого соответственно, руб./шт:
    • Базовый стоит примерно 30-32 и 21-26
    • Узкий — 12-17 и 14,8-16,5
    • Фигурный 32-44

    Преимущества гиперпрессованного кирпича

    • Устойчив к агрессивным средам и климатическим воздействиям;
    • Превосходит по прочности большинство керамических и любые силикатные изделия;
    • Идеально гладкие поверхности обеспечивают быстроту кладки, экономят кладочный раствор и трудозатраты;
    • Не имеет трещин и изломов, долговечен по сроку службы (до 200 лет) и сохранению эстетичности;
    • Поддаётся любой механической обработке прямо на стройплощадке;
    • Прочность связывания с цементным раствором выше, чем керамического, на 75-100%;
    • Прочность кладки на цементном растворе превышает керамическую, скреплённую тем же раствором, на 50-70%;
    • Возможность проведения кладочных работ в любое время года;
    • Доступность и экологичность используемого сырья.

    Недостатки

    • Относительно высокая цена сужает спектр использования гиперпрессованного кирпича при всей его прочности, идеально точной геометрии, многообразии цветов и фактур;
    • Необходимость просушивания кирпича перед кладкой максимально возможное время;
    • Достаточно большая нагрузка на фундамент при использовании полнотелого кирпича.

    Область применения

    Гиперпрессованный кирпич применяется для устройства фундаментов, цокольных этажей, несущих конструкций и, главным образом, для облицовки наружных и внутренних стен, фасадов, цоколей, колонн, заборов, украшения оконных и дверных проёмов, каминов, беседок; популярен в ландшафтном дизайне. Высокая прочность кладки позволяет выдерживать жилым и производственным зданиям, особым объектам землетрясения, оползни, взрывные волны, другие природные и техногенные угрозы.

    Способы транспортировки

    По истечении положенного срока выдержки кирпичи с технологических поддонов, на которых они просушивались, перекладывают на отпускные, располагая изделия как можно плотнее. Затем оборачивают термоусадочной или растягивающейся плёнкой, фиксируя полимерной лентой. Сформированные таким образом транспортные пакеты допустимы к перевозке различными видами транспорта.

    АлександрАлександр Дата: 2013-04-10

    Технология производства кирпича

    На рис.3 представлена развернутая схема операций подготовки глиномассы и пластического формования кирпича.

    Рис.3. Технологическая схема производства кирпича способом пластического формования.

    1 – ящичный подаватель, 2 – транспортер, 3 – дробление глины на дезинтеграторных вальцах, 4 – помол глины на бегунах, 5 – транспортер, 6 – формование кирпича на ленточном прессе, 7 – резка кирпича-сырца на автомате.

    Песок, добавки и воду, в случае недостаточной естественной влажности глины, можно добавлять на стадии помола на бегунах (как отмечено в блок-схеме).

    Ленточный пресс, или экструдер (рис.4), представляет собой машину, по принципу действия аналогичную мясорубке, но без ножей.

    Глина поступает сверху в глиномялку 8, продавливается через решетку 7 – в вакуум-камеру 6. В вакуум-камере создается разрежение, в результате часть воды испаряется, что способствует в дальнейшем упрочнению кирпича за счет уменьшения капиллярных пор, остающихся при испарении избыточной воды. Далее шнековый вал 1 уплотняет глину в прессовой головке 2 и через мундштук 3 с отверстием в идее прямоугольника размером 250 х 120 мм выдавливается глиняный брус 4, который в дальнейшем разрезается на отдельные кирпичи. Полученный необожженный кирпич называется «кирпич-сырец».

    Кирпич-сырец укладывается на вагонетки и поступает на сушку в туннельную сушилку, где навстречу движущимся вагонеткам с кирпичом идут отходящие из печи обжига горячие газы, высушивающие кирпич.

    Рис.4. Ленточный вакуумный пресс. 1 – шнековый вал, 2 – Прессовая головка, 3 – мундштук, 4 – глиняный брус, 5 – крыльчатка, 6 – вакуум-камера, 7 – решетка, 8 — глиномялка.

    Обжиг кирпича на современных заводах проводится в туннельных печах, по принципу действия сходных с туннельными сушилками, но в печи, в отличие от сушилки, на стенках средней части туннеля располагаются горелки, обжигающие своим пламенем кирпич, проезжающий мимо них на вагонетках. Температура обжига обычного стенового кирпича около 1000°С. Обожженный кирпич несколько остывает к концу туннеля печи, но принимает температуру окружающего воздуха уже на складе готовой продукции.

    Способ производства кирпича методом полусухого прессования отличается, прежде всего, подготовкой глины. Глину сушат в барабанных сушилках, измельчают в сухом виде на дезинтеграторах и увлажняют водой или паром до 8-10 % влажности. Далее прессуют отдельные кирпичи на гидравлических прессах и подают в вагонетках на обжиг. Стадия сушки сырца в этом методе отсутствует.

    Один и тот же материал, полученный разными способами, имеет различие в свойствах. Так, например, кирпич полусухого прессования отличается от кирпича, полученного способом пластического формования (при одном и том же сырье), меньшим сопротивлением изгибу. Изучение технологии в нашем курсе как раз имеет целью выяснение влияния способа получения на свойства материалов.

    На свойства кирпича и других керамических изделий влияет не только состав глины и глиномассы, не только способ формования, но и температура обжига. Если для стенового кирпича обычная температура обжига 900…1000°С, то дорожный кирпич, плитки для пола, огнеупорные материалы обжигаются при более высокой температуре – до 1400°С. Материалы, обожженные при разных температурах, имеют разную структуру.

    4. Состав структура и свойства керамики

    Из раздела о превращениях глины при обжиге (см. выше) ясен химический состав строительной керамики: сплав из силикатов алюминия и кремнезема. По фазовому составу в керамике можно выделить: кристаллическую фазу, аморфную фазу и поры. Аморфная фаза имеет тот же химический состав, что и кристаллическая, она образовалась при оплавлении кристаллов и играет роль связующего в керамическом материале. Содержание газовой фазы – пор зависит от степени спекания (температуры обжига) и наличия в составе глиномассы веществ, выделяющих при обжиге газы, например, порообразующих (выгорающих) добавок.

    Таким образом, структуру керамики можно назвать микроконгломератной, а при значительном содержании пор – капиллярно-пористой с открытыми порами.

    Если в плотной и технической (оксидной) керамике пористость играет отрицательную роль – снижает прочность, то в строительной керамике поры могут иметь и положительное, и отрицательное значение. Это касается, в первую очередь стеновой керамики – кирпича и керамических камней. Благодаря открытой пористости кирпичная стена «дышит», т.е. обладает необходимой для стенового материала газопроницаемостью. В то же время при большой влажности воздуха внутри помещения (бани, прачечные и пр.) влага задерживается в порах кирпича стены, замерзает в наружном слое зимой и вызывает разрушение кирпича. Пористая керамика, таким образом, относится к материалам с малой прочностью и морозостойкостью, а также со значительной водопроницаемостью (вследствие открытости пор). Поэтому для строительных керамических изделий, работающих в условиях постоянной влажности, применяют плотную керамику (дорожный кирпич, плитки для пола, санитарно-технические изделия, трубы)

    Характеристики структуры пористой керамики в цифрах: пористость 10-40%; водопоглощение по массе от 5 до 20 %; водопоглощение по объему от 10 до 40%. Плотная керамика имеет 0,5. 5 % водопоглощение по массе и 1. 10% по объему.

    Теплопроводность керамики: 1,16 Вт/м.К – для абсолютно плотного черепка, 0,8 Вт/м.К – для кирпича, 0,2 Вт/м.К и менее – для эффективных (теплоизоляционных) изделий.

    Прочность пористой керамики до 30 МПа, плотной — до 100 МПа; морозостойкость пористой керамики 15-50, плотной – выше.

    Свойства керамического стенового кирпича в соответствии с ГОСТ 530-95 изложены в лабораторном практикуме. Там же приведены разновидности стенового кирпича и керамических камней по размерам.

    Шлак при производстве кирпича

    Одной из важных проблем охраны окружающей среды и рационального использования природных ресурсов является проблема кирпичного производства. Источники, которые загрязняют воздушный бассейн, почву, нанося огромный вред здоровью человечества, образуются в процессе производства строительных материалов [8, 9]. Предприятия строительного комплекса, также вносят негативный вклад в изменение экологического потенциала того или иного региона. Такова главная проблема при изготовлении альтернативы естественному камню в сушильной камере на кирпичном заводе.

    К основному загрязняющему веществу при производстве кирпича относят пыль. Вещества, выделяющиеся из компонентов шахты при тепловой обработке в печах: соединения серы, хлора и фтора. Источники появления загрязняющих веществ, разлагающиеся при нагревании с выделением летучих компонентов: например, гумусовые вещества в глинах и пирит разлагаются с выделением оксида углерода, сернистого и серного ангидридов. Хочется также выделить сушильные камеры на кирпичном заводе, в работе которых выделяется большое количество механической пыли, но почему-то производители уделяют этой проблеме наименьшее внимание.

    Сушильная камера принадлежит к производству строительных материалов и предназначено для использования при реконструкции действующих и проектировании новых кирпичей. Технологическая линия формовки и сушки данного материала пласт содержит последовательно установленные ленточный пресс, автомат многострунной резки, автомат-укладчик кирпича и сушила. Линия дополнительно снабжена сушильными каркасами с Т-образными стойками и автоматом-укладчиком для укладки на сушильные каркасы рамок с кирпичом. Данный аппарат состоит из переходного рольганга, шагового конвейера, группирующего конвейера и подъемника с лапами. Транспортировка сушильных каркасов с кирпичом в сушила производится штабелерами по гладкому полу, установка их внутри сушильной камеры производится в два яруса по высоте на Т-образные стойки самих сушильных каркасов [6].

    Сформированный кирпич-сырец укладывается на шестиполочные вагонетки. С интервалом 54 минуты вагонетки загружаются в сушила тоннельного типа. Всего 14 тоннелей в одном блоке. Для сушки кирпича используется тепло отходящих дымовых газов из печей обжига кирпича. Около 24 часов и температуре 125 – 140℃ именно таков срок сушки кирпича-сырца. Сушка кирпича-сырца производится до содержания влажности 8%. Выходящие газы из сушки при помощи вытяжного вентилятора выбрасываются в атмосферу. Дымовые газы не полностью используются для сушки кирпича-сырца. Большая доля дымовых газов выбрасывается в атмосферу, предварительно проходя через трубу. Несмотря на современные технологии, машина не может в полной мере обезопасить работников от воздействия пылевых частиц.

    Пыль – это аэрозоли с твердыми частицами дисперсной фазы размером преимущественно 10 -4 — 10 -1 мм. Пыль бывает различного происхождения: производственная, биологическая, вулканическая и т.д. Некоторые виды производственной пыли взрыво- и пожароопасны, загрязняют окружающую среду, вызывают профессиональные заболевания.

    Что касается производственной пыли, то она занимает лидирующее место среди неблагоприятных факторов, которые пагубно влияют на здоровье человечества. Целый ряд технологических процессов сопровождаются образованием порошкообразных частиц (пыль), которые в свою очередь способны некоторое время находиться в воздухе или промышленных газах во взвешенном состоянии.

    Выделяют 3 вида производственной пыли:

    Степень влияния пыли на организм человека и окружающую среду, связаны с величиной частиц, изучение которой удаляется первостепенное значение [1].

    По размеру частиц (дисперсности) пыль различают:

    — видимую (размером более 10 мкм);

    — микроскопическую (от 0,25 до 10 мкм);

    — ультрамикроскопическую (менее 0,25 мкм).

    Возможность и характер действия производственной пыли на организм человека предопределяет специфика её качественного состава. Форма и консистенция пылевых частиц, её растворимость в тканевых жидкостях организма зависят от природы исходного материала. Чем больше растворимость токсической пыли, тем быстрее и сильнее ее вредное влияние. Растворимость пыли в воде и тканевых жидкостях не всегда имеет отрицательный характер, но и положительный. Благоприятным фактором является хорошая растворимость, если пыль не токсична и действие ее на ткань сводится к механическому раздражению, так как это способствует быстрому удалению ее из легких. Когда пыль токсична хорошая растворимость является отрицательным фактором.

    В спокойном невозмущенном воздухе скорость осаждения пылевых частиц под действием силы тяжести, характеризует поведение её в воздухе [3].

    Так, причиной хронических трахеитов и бронхитов могут стать длинные и мягкие пылевые частицы, которые легко осаждаются на слизистой оболочке верхних дыхательных путей, задерживаются и накапливаются там. В организм они попадают тремя различными путями: через органы дыхания, желудочно-кишечный тракт и кожу.

    По степени вредности её можно классифицировать:

    во-первых, как инертная (сажа, сахарная пыль и др.), состоит из веществ, не оказывающих токсического воздействия на организм человека;

    во-вторых, как агрессивная (пыль свинца, мышьяка и др), обладает токсическими свойствами.

    Различают воздействия пыли на организм человека:

    — фиброгенное — действие пыли, когда разрастание соединительной ткани происходит в легких. Это приводит к нарушению функционирования и нормального строения органа;

    — раздражающее – действие оказывается на верхние дыхательные пути, кожу и слизистые оболочки глаз;

    — токсическое – токсические вещества (свинец, хром, бериллий и др.), которые попадают в организм человека через легкие, вызывая хронические заболевания.

    На кирпичном заводе в условиях повышенной температуры воздуха, в основном из-за оборудования, увеличивается поступление пыли в организм. Процесс выполнения тяжелой физической работы, учащённое дыхании, а также загазованность воздуха усугубляет ее негативное действие.

    Попадание пыли через ротовую полость, тоже несет свой негативный характер. Она оседает на губах, зубах и со слюной попадает в желудок, тем самым усиливает неблагоприятную среду, провоцируя такие болезни как, язва желудка и двенадцатиперстной кишки.

    Немудрено, что производственная пыль может проникать в кожу и в отверстия сальных и потовых желез. В этих случаях воспалительный процесс может развиваться постепенно. Язвенные дерматиты и экзем образуются при воздействии на кожу пыли хромощелочных извести, солей, соды, мышьяка, меди и других химических веществ.

    Хочется отметить, что большое место среди специфических профессиональных пылевых заболеваний занимает пневмокониоз – болезнь легких. Развитие склеротических и связанных с ними других изменений, провоцирует отложение различного рода пыли и последующим ее взаимодействием с легочной тканью. Силикоз является разновидностью пневмокониоза. Длительное вдыхание пыли, которая содержит свободную двуокись кремния (Si02), способствует развитию болезни, представляющую наибольшую опасность. Хронический процесс медленно протекает, как правило, развивается только у лиц, проработавших несколько лет в условиях значительного загрязнения воздуха кремниевой пылью. Были случаи, когда этот процесс развивался довольно быстрыми темпами, примерно за три года он достигает конечной, терминальной, стадии.

    Пылевые частицы ухудшают видимость и концентрацию в производственных цехах, вызывая возникновение конъюнктивита (воспаление слизистой оболочки или конъюнктивы, которая выстилает внутреннюю поверхность века). Кроме того, пыль увеличивает износ сушильных камер и иного оборудования на кирпичном заводе, ухудшает санитарное состояние производственных помещений, становится низкий уровень освещенности из-за загрязнения световых проемов, ламп и осветительной арматуры, может способствовать возникновению пожаров и взрывов. Все эти причины негативно сказываются на производительность и качество труда, а также ухудшается общая культура производства [4].

    Так как есть проблема, должен существовать и способ её решения. Для разработки экологически эффективной и энергетически экономичной инженерно-экологической системы, т.е. системы снижения загрязнения воздушной среды (ССЗВС) прежде всего следует исследовать свойства неорганической пыли [5, с. 4]. Все это, как одна из основных характеристических величин, учитывается и используется в расчетах, для того чтобы применение пылеулавливающих аппаратов было эффективным.

    Для отчистки воздуха на предприятиях строительного характера от механической пыли и не только были придуманы пылеуловители и фильтры. Фильтры – это такие устройства, в которых отделение пылевых частиц от воздуха производиться путем фильтрации через пористые материалы. Аппараты, которые основываются на других принципах пылеотделения, называются пылеуловители.

    Принимая во внимание того, как во взвешенном состоянии пылевые частицы отделяются от общего потока газа, существуют разные типы пылеулавливающих аппаратов:

    — фильтры (пористые перегородки или различные слои материала препятствуют свободному пропусканию пылевых частиц);

    — мокрые пылеулавливающие аппараты (идет промывка взвешенных частиц жидкостью, которые в дальнейшем задерживаются в ней);

    — сухие механические пылеулавливающие аппараты (механические силы отделяют пылевые частицы от общего потока газа);

    — электрические пылеулавливающие аппараты (с помощью электрических сил частицы пыли отделяются от газового потока);

    — комбинированные пылеулавливающие аппараты (суммарное использование различных принципов отчистки).

    По функциональному назначению оборудование различают:

    — во-первых, по отчистке поступательного воздуха в системах вентиляции и кондиционировании;

    — во- вторых, по отчистке воздуха или газов, выбрасываемых в атмосферу системами промышленной вентиляции.

    Камеры, которые осаждают пыль являются наиболее простыми аппаратами отчистки воздуха от взвешенных частиц по устройству и эксплуатации. Их необходимо устанавливать на кирпичных заводах, с целью обеспечения экологической безопасности окружающей среды и здоровья сотрудников, работающих на этом предприятии. Процесс аспирации происходит под действием силы тяжести при прохождении воздуха через камеры. Эти устройства применяют для глубокой отчистки, их эффективность пылеулавливания составляет около полусотни процентов. Аэродинамическое сопротивление камер колеблется в пределах сотни Па, а скорость движения воздуха в камере равна 0,2 – 0,8 м/с.

    Для того, чтобы улучшить эффективность пылеулавливающих камер, их разделяют по высоте полками. Эти полки нужно периодически встряхивать, чтобы отчистить от оседающей пыли, и фильтрация проходила более эффективно. С такой же целью используют пылеосадительные камеры лабиринтового типа.

    Циклоны или как их ещё называют центробежные пылеотделители широко применяются для фильтрации воздуха в промышленных предприятиях. Их преимущество состоит в том, что при сравнительно простой конструкции, они обеспечивают высокую степень очистки воздуха от пыли, что составляет в районе девяноста процентов. Наиболее эффективное улавливание пыли образуется с увеличением скорости входа воздуха в циклон, но при слишком большой скорости возрастает турбулизация водоемов и тогда эффективность циклона падает. Разработчики установили, что 20 м/с считается максимальной скорости всасывания воздуха.

    Для предотвращения загрязнения пылью воздушной среды в производственных помещениях и охраны здоровья необходимо проводить определенные защитные мероприятия.

    — Наивысшая механизация и развитие процессов машинного производства. Мероприятие направленно на уменьшение или полное исключение количества рабочих, находящихся в зонах интенсивного пылевыделения.

    — Использование герметичных установок для транспорта пылящих материалов. Эти установки позволяют решать не только транспортные, но и санитарно-гигиенические задачи, они полностью исключает пылевыделения в воздушную среду помещений. Такие же проблемы устраняет гидротранспорт.

    — Применение увлажненных сыпучих материалов. Чаще всего применяется гидроорошение, которое осуществляется с помощью форсунок тонкого распыления воды;

    — Использование эффективных вентиляционных установок. Пыль и отходы, образующиеся при механической обработке газобетона, древесины, пластмасс и других хрупких материалов, удаляются посредствам этих установок. Аспирационные установки успешно применяют при процессах транспортирования, размола, дозирования и смешения строительных материалов, при процессах сварки, резки, пайки изделий и др.

    — Регулярная и детальная уборка производственного цеха с помощью вакуумных установок. Стационарные установки позволяю имеют наибольший гигиенический эффект, так как при высоком разрежении в сетях, они гарантируют качественную пылеуборку значительных производственных площадей;

    — Пылеуборка аспирационного воздуха при его подаче в помещения и выбросе в атмосферу. Целесообразно отводить, выбрасываемый вентиляционный воздух, в верхние слои атмосферы для того, чтобы обеспечить его хорошее рассеяние и тем самым ослабить вредное воздействие на окружающую среду.

    — Обязательное использование средства индивидуальной защиты от пыли респираторов, очков и противопыльной спецодежды [7].

    Известно, что в строительном производстве при разных технологических процессах может выделяться ряд вредных газов: ацетон, аммиак, бензин, оксид углерода, хлор, ацетилен н и т.д. Одной из эффективных мер профилактики при отравлении и профессиональных заболеваний в строительстве является создание определенных условий труда. Такие, при которых работодатель должен исключить или свезти к минимуму контакт работающих с вредными веществами. Со всем штатом, который имеет дело с вредными веществами должен быть проведен инструктаж, в результате которого происходит обучение правилам техники безопасности. Так же каждый из сотрудников должен знать начальные признаки действия вредных веществ. Спецодежда, специальная обувь, перчатки и рукавицы, прорезиненные или из кислотостойких материалов, применяют для защиты тела. Пылезащитные очки защищают органы зрения. Медицинские осмотры проводят в обязательном порядке.

    Технология производства безклинкерного цемента

    Этап получения клинкера входит в традиционную технологию изготовления цемента. Клинкер – это смесь глины и известняка гранулированного типа, которая прокаливается до 1400°С.

    Главными минусами этой технологии являются:

    • Большая энергоемкость.
    • Высокая капиталоемкость.
    • Длительный срок окупаемости.
    • Плохое воздействие на природу.

    Альтернативная технология изготовления так называемого безклинкерного цемента направлена на то, чтобы убрать частично или уменьшить все выше перечисленные негативные последствия традиционного производства цемента. В технологическом процессе при «холодном» методе изготовления отсутствует этап высокотемпературной прокалки клинкера. На этой стадии прокалка клинкера происходит в дорогих барабанных печах, которые вращаются. Поэтому данный этап отличается высоким уровнем энергетических затрат. При «холодном» производстве капитальные и энергетические затраты существенно ниже. Технология изготовления безклинкерного цемента позволяет снизить себестоимость в несколько раз даже при условии использования малотоннажных установок.

    Безклинкерный цемент

    Это шлако-щелочной тип цемента. Он используется в тех же областях, что и традиционный. Физические и химические характеристики этого типа цемента не отличаются от традиционного вида цемента. Что же касается бетона и раствора для строительных целей из этого цемента, то он характеризуется высокой степенью противостояния к износу, а также не боится влияния агрессивных сред. Дополнительно бетон и раствор из этого типа цемента имеет низкую температуру гидратации.

    Шлак является основой шлако-щелочного цемента. Его получают двумя способами:

    1. Al2O3, SiO2, CaO (являются базисными компонентами для производства шлака высокого качества) перемешиваются в определенных пропорциях и затем расплавляются. На выбор можно взять следующие виды сырья:

    • зольную пыль, пуццолану, вулканический пепел;
    • доломитизированный известняк либо карбонат кальция, известняк, известковую глину;
    • глину или известь (содержат песок) и сам песок;
    • отходы минерального происхождения, которые содержат кремний, кальций, алюминий.

    2. Использование полученного в результате производства чугуна готового доменного шлака.

    Производство цемента, в технологии которого используют специальный гидравлический шлак

    У этого вида производства есть три стадии, которые отличаются от стадий изготовления традиционного цемента: плавление, охлаждение расплава, помол цемента.

    Плавление сырья с целью получения шлака
    Сырье сначала пропускают через оборудование предварительного нагрева. Затем его плавят в плавильной печи при температуре приблизительно в 1450°C. Печь для плавления похожа на стекловаренную печь. Только нагрев печи обеспечивает уголь, пылевидное топливо, газ или традиционный вид топлива.

    Охлаждение расплава и его помол
    Из плавильной печи на выходе расплав остывает и проходит процесс грануляции. Технология грануляции с охлаждением водой создает высокий уровень реактивности шлака. Вода для охлаждения, поступающая под высоким давлением, дает возможность охладить быстро стекломассу в жидком состоянии и также обеспечивает в шлаке содержание стекла в большом количестве. Из системы для охлаждения шлак на выходе становится едва теплым и почти сухим. Его уже можно использовать.

    Шлак с большим уровнем потенциальной реакционной способностью можно получить при условии быстрого охлаждения расплава. Гранулят способен храниться на протяжении долгого времени без потерь данного качества.

    Гранулированный шлак, который уже охлажден, нужно измельчить до порошкообразного состояния. После этого он способен вступать в реакцию при контакте с водой.

    Производство цемента

    Чтобы произвести цемент, который можно сразу использовать, нужно перемешать три компонента:

    • гранулированный и высушенный шлак;
    • дополнительный материал в порошкообразном состоянии;
    • активатор в малом количестве.

    Чтобы получить цемент с нужным уровнем качества, компоненты перемешиваются и дозируются в требуемых пропорциях.

    В малых дозах (от 2 % до 5 % от объема смеси) добавляют активатор. Выбирая вид и количество активатора, можно получить любую нужную марку цемента. За счет использования базовых компонентов можно произвести разнообразные марки цемента. При производстве определенной марки меняется лишь доза и виды компонентов для смешивания.

    Необходимо использовать компоненты, которые бы сдерживали высокий уровень реакционной способности полученного шлака. К сдерживающим добавкам относится пыль из золы или иной химически инертный компонент.

    Стадии изготовления цемента, которые присущи исключительно для изготовления шлакового цемента, были изложены выше. Другие стадии похожи со стадиями изготовления традиционного портландцемента:

    • Разработка сырьевых месторождений, подготовка материала в качестве сырья, дробление, помол, хранение компонентов до момента наступления стадии предварительного нагрева и стадии плавления.
    • Перемешивание перед стадией предварительного нагрева и плавления разных добавок.
    • Расфасовка в мешки цемента с дальнейшей доставкой на склад после стадии перемешивания шлаков, активатора и дополнительных материалов.

    Цемент, который произведен таким способом, имеет низкий уровень температурной гидратации при получении бетона. Поэтому его можно использовать в изготовлении бетона монолитного типа, который укладывают в массы большого размера. Стойкость к воздействию сред агрессивного характера (сточные воды, морская вода) является дополнительным достоинством данного типа бетона.

    Цемент, полученный безклинкерным методом, имеет высокий уровень потребительских качеств. Стоит также отметить тот факт, что данный способ получения цемента (по сравнению с традиционным) в меньшей степени влияет на окружающую среду.

    При изготовлении цемента традиционным методом сырье в огромных количествах добывают, как правило, из земли с последующим получением из него материала для цемента. В технологическом процессе используют технологию обжига, спекания либо плавления и помола. Все указанные выше этапы производства являются энергозатратными. К тому же они отрицательно воздействуют на природу.

    Стоит также отметить, что производство цемента традиционным методом параллельно сопровождается выбросами отработанных газов в атмосферу и загрязнением ее пылью. От этих негативных воздействий не освобождено производство безклинкерного цемента. Однако оно является более чистым по экологическим показателям.

    Использование при производстве безклинкерного цемента вторичного сырья помогает сберечь ресурсы Земли.

    Стоимость производства безклинкерного цемента, как и традиционного, формируется из одинаковых составляющих. Объем вложений на изготовление одной тонны цемента обоих этих производств также практически не отличается. Однако изготовление безклинкерного цемента является рентабельным даже на предприятиях с малыми мощностями. Поэтому производить этот вид цемента можно даже в регионах, в которых уже есть производство цемента традиционным методом.

    Возможность использовать производителем для изготовления безклинкерного цемента более разнообразный перечень первичного и вторичного сырья может понизить материальные затраты. Производитель, используя более дешевое сырье, сможет уменьшить материальные затраты.

    Изготовление цемента на основе доменного шлака

    Второй вид изготовления безклинкерного цемента заключается в следующем. Происходит процесс переработки металлургических шлаков и получения гидравлических вяжущих типов цемента, которые схожи с марками цемента М300 либо М400.

    В первой половине 20 века было обнаружено, что доменные шлаки (при условии обладания ими нужного химического состава и содержания стекла) могут быть активизированы. При этом условии шлак получает потенциальные гидравлические свойства. Другой выявленной способностью доменного шлака стала его возможность вступления в реакцию с солями щелочных металлов. Главные этапы изготовления в себя включали: помол до состояния порошка доменного шлака и добавление щелочной субстанции.

    Уже на протяжении 80 лет предпринимались шаги произвести и применить щелочно активированный шлаковый цемент. В масштабах промышленного уровня этот тип цемента реализовывался на территории Украины, Скандинавии, Польши. Этот вид цемента по большей части использовался в изготовлении блоков из бетона.

    Доменный шлак в большинстве случаев является главным сырьем. С использованием щелочных солей проводилась активизация. Высокий уровень качества конечного продукта при применении этого типа цемента был доказан еще с момента запуска промышленного производства.

    Процесс изготовления цемента состоит из ряда взаимосвязанных и непрерывных этапов:

    • подача сырья в требуемых дозах с мест хранения и формирование шихты в нужных пропорциях (смесь из шлака, добавок минерального происхождения, химического активатора);
    • сушка в барабанной сушилке приготовленной шихты;
    • тонкий помол шихты в шаровой мельнице, придание качеств цемента;
    • фасовка и транспортировка приготовленного цемента.

    В доменную печь при изготовлении чугуна погружают железную руду, флюсовый камень и кокс. Из печи выходит расплавленный чугун и шлак. В состав шлака входят по большей части кварц, оксид алюминия, оксид кальция и магния. Охлаждение воздухом и холодной водой, дробление, помол – это основные четыре способа обработки шлака в расплавленном состоянии, каждый из которых придает материалу отличительные характеристики.

    На 95% доменный шлак состоит из кварца, а также оксидов алюминия, кальция и магния, а оставшиеся 5 % составляют соединения железа и серы, марганец и иные элементы в незначительном количестве. В охлажденном воздухом шлаке они объединяются в разнообразные силикаты и алюмосиликатные минералы. В шлаках, которые прошли обработку дроблением и помол, эти элементы содержатся в форме стекла. Сырье, используемое для производства шлака, отбирается и перемешивается тщательно, поэтому его химический состав колеблется в малом диапазоне.

    На заводах Урала и Кузбасса, а также на других предприятиях шлаки, как и химические активаторы с добавками минерального происхождения, скапливаются тоннами. Предприятия расходуют для утилизации отходов огромные средства.

    Можно назвать следующие достоинства способа изготовления цемента на основе металлургического шлака:

    голоса
    Рейтинг статьи
    Читайте так же:
    Расход глины для производства кирпича
Ссылка на основную публикацию
Adblock
detector