Beton-zavod-ivanteevka.ru

БЕТОННЫЙ ЗАВОД "РБУ ИВАНТЕЕВКА"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Описание дентина: что это такое, каково его гистологическое строение, роль в развитии зуба

Описание дентина: что это такое, каково его гистологическое строение, роль в развитии зуба?

Дентин – важная составляющая зубного органа. Он определяет форму и цвет зуба, благодаря пластичной структуре предотвращает механические повреждения органа, а его расположение вокруг мягких тканей защищает пульпу и корень. Дентин – это поддерживающий аппарат зуба, он сохраняет целостность эмали и является барьером для проникновения бактерий в глубинные слои.

Что это такое?

Зуб – это орган, состоящий, как и другие органы, из тканей. Структурно он делится на 2 части – коронку и корень. Коронку мы видим, когда открываем рот. Корень уходит в челюстную кость, для нас он скрыт в десне. Выделяют также шейку – часть, которая располагается на стыке корневой и коронковой областей. Для того чтобы изучить структурные особенности, специалисты используют шлиф зуба – особым образом приготовленный и отшлифованный срез костного образования, представляющий собой обрезанную с двух сторон пластину.

Структура зуба включает:

  • Эмаль. Она покрывает коронку и выполняет защитную функцию.
  • Дентин – прочная, но эластичная основа, находится сразу под эмалью в коронке и цементом в корне.
  • Цемент – вещество, которое покрывает дентин в корневой области. Основная задача цемента заключается в креплении зубной единицы к альвеоле.
  • Пульпа – наиболее мягкая ткань. Через нее идут нервные окончания и капилляры, что обуславливает болезненные ощущения при глубоких кариозных поражениях.

Начальная стадия развития зуба приходится на 6-7 неделю внутриутробного формирования плода, когда закладывается зачаток. Появляется пластина, на которой впоследствии расположатся первые зубные единицы. На 3 месяце беременности эмалевые органы на зубной пластине расходятся и попадают в отдельные мешочки.

Гистогенез дентина начинается с 4 месяцев. Тогда же закладываются эмаль и цемент, зачаток обзаводится пульпой, а мешочки превращаются в альвеолы. Молочные зубы у детей полностью появляются к 2-2,5 годам. Процесс выпадения молочных и формирования постоянных зубов начинается у детей в 4-7 лет.

Дентин – самая большая область зубного органа. Его размеры колеблются от 2 до 6 мм в зависимости от особенностей организма. Это можно увидеть на шлифе любого зуба. Дентин является одним из самых твердых костных образований в теле человека, превышая по прочности все скелетные кости и уступая лишь эмали. Именно эмаль – самое прочное вещество в человеческом организме. Разница в твердости дентина и окружающей его оболочки позволяет защитить эмаль от растрескивания. Обе эти ткани крепко соединены между собой при помощи специальных выемок в эмали и выступов в дентинной поверхности.

Вместе с тем дентин – довольно эластичная субстанция. Располагаясь в сердцевине, он исполняет роль амортизатора, не давая разрушаться эмали и защищая зубную систему от повреждений вследствие механического воздействия.

Строение

Согласно гистологии, дентин является сосредоточением множества волокон коллагена в зоне, где находится зубной зачаток, просветы рядом с которыми заполнены специфическим веществом. В круговом направлении сквозь него проходит большое количество так называемых дентинных канальцев. В этих трубовидных системах находятся одонтобласты, они же дентинобласты — образования, которые располагаются в пульпе, зоне, где локализуется зубной мешочек. Одонтобласты делают жевательную систему чувствительной и отвечают за обменные процессы в ткани зуба.

Гистологическое строение дентинной области зуба хорошо просматривается на шлифе:

  • Предентин – субстанция, которая покрывает пульпу и насыщает ее полезными веществами. В состав предентина в большом количестве входят одонтобласты.
  • Интерглобулярный дентин. Он расположен между трубочками и заполняет собой основное пространство всей дентинной области. Интерглобулярный слой состоит из коллагеновых волокон, расположение которых в разных отделах отличается. Интерглобулярный, в свою очередь, делится на плащевой и околопульпарный дентин. Околопульпарный находится рядом с пульпой, а плащевой дентин прилегает к внешней оболочке. Околопульпарная и плащевая области интерглобулярного дентина различаются направлением коллагеновых волокон и насыщенностью трубочками. Рядом с пульпой минералов содержится больше, чем в плащевом слое дентина.
  • Каналы, которые пронизывают все дентинное тело. Чем больше таких путей, тем лучше защищены мягкие ткани. В молочных зубах каналы широкие и короткие, что позволяет бактериям довольно легко проникать в глубинные слои органа. При смене на постоянный жевательный аппарат канальцы становятся узкими и продолговатыми. С возрастным изменением твердого слоя происходит еще большее искривление и удлинение трубовидных каналов.
  • Перитубулярный дентин находится внутри каналов и представляет собой вещество с высокой минерализацией.
  • Склерозированный слой – особая прозрачная субстанция. Формирование склерозированного дентина и его увеличение длится на протяжении всей жизни человека.

Химический состав

Дентинный слой по химическому составу близок к костной ткани, но не содержит кровеносных сосудов и клеточных элементов. 70% вещества составляют неорганические соединения, 20% — органические. Еще 10% приходится на воду и минералы.

Среди неорганических веществ основу составляет фосфат кальция. В составе дентина присутствуют фосфаты фтористого кальция, фосфорнокислого магния, углекислого кальция и натрия. Среди органических соединений выделяют коллаген, аминокислоты, липиды, полисахариды. Присутствует незначительный процент макрочастиц и микроэлементов.

Разновидности, значение и функции

Существует 3 вида дентина:

  1. Первичный дентин. Он формируется на стадии прорезывания зубных единиц и закладывается еще во время внутриутробного развития. Дентинные канальцы при этом прямые и широкие.
  2. Вторичный дентин. Его развитие начинается с момента прорезывания зуба и продолжается всю оставшуюся жизнь человека. Слой заменяет первичные ткани, поэтому его называют заместительным. Структурно вторичный и первичный дентин мало чем отличается, изменения касаются только каналов вторичного вида. Проходы приобретают более искривленный характер, тем самым лучше защищая пульпу.
  3. Третичный слой возникает в местах действия возбудителя — кариеса или патологических процессов. Механизм позволяет предотвратить доступ болезнетворных веществ к зубному нерву. Места появления области хаотичны, поэтому ее называют иррегулярной.

Функции твердой ткани обусловлены ее расположением в органе, гистологическим строением, составом:

  • дентин формирует размеры и контуры зуба;
  • выполняет поддерживающую функцию, защищая пульпу от проникновения вредоносных бактерий, сам орган от жевательной нагрузки, а эмаль – от разрушения;
  • защитным механизмом служит появление третичного дентинного образования;
  • благодаря многочисленным канальцам, заполненным зубным ликвором, осуществляется питание эмали, дентинной и твердой ткани;
  • дентинно-эмалевый слой чувствительный, что позволяет быстро реагировать на внешние раздражители.

Заболевания дентина зуба

Основная причина поражения дентина – кариес. Причинами кариеса становится чрезмерное употребление углеводосодержащей пищи, зубной налет, микрофлора которого разрушает эмаль, снижение уровня кислотности во рту. Твердые ткани под действием перечисленных факторов лишаются минерализации, и происходит их изменение. Дентинная система обзаводится так называемыми мертвыми путями, в которых отростки одонтобластов погибли. Если не устранять кариес на ранних этапах, бактерии проникнут к пульпе и вызовут воспаление. Отмершие области придется удалить, что прекратит обменные движения в дентине.

  • Повышенная стираемость эмали. Она возникает при неправильном прикусе или же воздействии на эмаль агрессивных веществ. В результате болезни коронка частично или полностью разрушается, для ее восстановления требуется процедура реставрации.
  • Клиновидный дефект. Вслдствие нарушения обменных процессов в эмалевом и дентинном слоях возникают дефекты в отделе шейки. Поражению чаще всего подвержены резцы и клыки, реже – малые коренные единицы.
  • Гиперестезия, которая нередко сопровождает уже перечисленные проблемы. Гиперестезия – это повышенная чувствительность зубного аппарата к еде разной температуры, к сладкой или соленой пище. Наблюдается такая проблема и при процессе жевания.
Читайте так же:
Цемент пц500 д0 это

Восстановление

Твердая ткань способна восстанавливаться благодаря функциям одонтобластов в дентинном слое зуба, но только если зубной нерв живой. Когда стоматолог удаляет нерв, восстановительные процессы останавливаются, белки и остальные питательные и энергетические вещества больше не проходят через дентинный слой.

В период развития кариеса самовосстановление дентина замедляется. Кариозные полости необходимо устранять как можно раньше, чтобы поражение не привело к серьезным последствиям. Стоматолог удаляет размягченные слои и пломбирует полость. Современные фотополимерные пломбы не только полностью заменяют изъятые части эмали и дентина, но и отличаются естественным цветом и позволяют воссоздать правильную анатомическую форму жевательного органа.

Для восстановления дентина необходимы питательные вещества, микроэлементы и ферменты. Их можно получить как изнутри, так и снаружи, через еду и применение специальных препаратов для зубов. Употребление здоровой пищи, богатой витаминами и минералами, позволит полезным соединениям проникнуть в дентин через эмаль.

Использование зубной пасты должно быть правильным, чтобы фтор, кальций и другие элементы успели впитаться. Движения зубной щеткой должны быть круговыми, а процедура чистки зубов должна длиться минимум 2-3 минуты.

Наиболее полезные для здоровья ткани вещества:

  • кальций;
  • витамин С;
  • магний;
  • витамины группы В;
  • витамины А, Е, D.

Все они содержатся в натуральных овощах и фруктах, мясе, молочных продуктах, рыбе. При нехватке витаминов или питательных веществ на помощь придут пищевые добавки и минерально-витаминные препараты.

Функции эмали дентина цемента

Развитие биологических и медицинских подходов к реконструкции зубов с использованием стволовых клеток является перспективным и остается одной из самых серьезных проблем в стоматологической сфере на ближайшие годы [1, 2]. Однако наиболее исследованной моделью для исследования регенерации структур развивающихся зубов являются грызуны, резцы которых непрерывно растут на протяжении всей жизни животного за счет наличия эпителиальных и мезенхимальных стволовых клеток [3, 4]. Исследования по формированию коронкового дентина были одним из основных направлений развития зуба в течение нескольких десятилетий. Несмотря на то, что известно о развитии зубов млекопитающих из двух типов клеток: эктодермы, образующей амелобласты, и клеток эктомезенхимы, которые являются источником одонтобластов и цементобластов, процесс развития зубов и дифференцировки клеток остаётся представленным тупиковыми концепциями. Популяционная распространенность генетической короткой корневой аномалии (SRA) без видимых дефектов коронки близка к 1,3 %. Кроме того, люди с самой SRA предрасположены к корневой резорбции во время ортодонтического лечения [5, 6]. Два типа клеток, дифференцируясь в процессе развития ротовой полости, взаимодействуют и индуцируют весь процесс инициации морфогенеза и дифференцировки зуба. Клеточно-клеточные сигнальные пути и их целевые ядерные факторы были определены в качестве ключевых посредников прогрессивно сложного обмена информацией между эктодермой и эктомезенхимой. Постоянно меняющееся направление обратной сигнализации и реакции клеток между эктодермой и эктомезенхимой позволяет клеткам непрерывно контролировать их относительные пространственные положения и дифференцированные состояния. Наименее понятными из ранних процессов развития зуба являются морфогенез и паттернинг [7]. Из, казалось бы, однородного слоя пероральной эктодермы и подстилающей массы эктомезенхимоцитов, в разных положениях развиваются различные типы и формы зубов. Тип зуба определяется на самом раннем этапе развития, до явного начала морфогенеза. Эти процессы мало изучены и во многом необъяснимы, несмотря на многочисленные исследования ранних клеточных взаимодействий эктодермы-эктомезенхимы и их реакций на позиционные различия в развивающейся челюсти. Многочисленные исследования, выполненные на материале эмбрионов человека, рассматривают развитие зубов, исходя из известных 2-х типов исходных клеток, что, по нашему мнению, является недостаточным.

Цель исследования: изучить развитие и особенности морфогенеза зубов человека на ранних этапах эмбрионального развития.

Материалы и методы исследования

Исследования проведены на эмбрионах и плодах человека (рис. 1) в соответствии с требованиями Минздравмедпрома РФ от 29.04.94 № 82 и согласно номенклатуре клинических лабораторных исследований МЗ РФ (приказ № 64 от 21.02.2000 г.) с учётом положений Хельсинкской декларации (2013). С помощью кластерного анализа исследованы потенциальные однородные подгруппы материала в соответствии с принципами доказательной медицины. Использован классический морфологический метод исследования с окрашиванием срезов гематоксилином и эозином с последующим анализом полученного иллюстративного материала. Ретроспективная оценка результатов проводилась по морфологическим признакам, наблюдавшимся при использовании микроскопа Olympus Bx 52. Исследование проведено с разрешения Этического комитета ФГБОУ ВО ТГМУ и ФГАОУ ВО ДВФУ.

rev1a.tifrev1b.tif

Рис. 1. а) Эмбрион человека на стадии 30 сомитов; б) Головной отдел эмбриона человека в период нейруляции. Нативные препараты. Ув. х100

Результаты исследования и их обсуждение

На самом раннем этапе развития человека на стадии 10 и более сомитов (рис. 2) обособляется головной конец зародыша человека и появляется ротовая ямка (рис. 3).

rev2a.tifrev2b.tif

Рис. 2. Эмбрион человека в конце 3-й недели. Стадия а) 10; б) 30 сомитов. 2-х слойная эктодерма туловищного отдела зародыша человека (указана зелеными стрелками), вдается между сомитами более чем на 1/3 зародыша. Голубая, красная и зеленая звёздочки соответственно указывают дерматом, миотом и склеротом). Красные стрелки указывают на энтодерму. а) мезодерма в начале дифференцировки на дерматом, миотом и склеротом; б) выраженная дифференцировка мезодермы на дерматом, миотом и склеротом. Микрофото. Окраска гематоксилином. Увеличение х100

rev3a.tifrev3b.tif

Рис. 3. Полость рта эмбриона человека пяти недель. 1, 2) носовой и медиальный небный отростки формирующейся верхней челюсти; 3) язык; 4) нижняя челюсть, 5) многослойный плоский неороговевающий эпителий. Окраска гематоксилином и эозином. Ув. х200

Читайте так же:
Цементный раствор для проливки керамзита

Наши данные являются убедительным доказательством морфологических отличий эпителия преддверия полости рта и эпителия собственно ротовой полости, имеющих соответственно эктодермальное происхождение, и из выстилки передней кишки.

Первоначально эпителий, выстилающий полость рта, является однослойным, однако уже в начале 5-й недели он превращается в двухслойный, который становится многослойным в конце 5-й, начале 6-й недели (рис. 4).

rev4.tif

Рис. 4. Полость рта эмбриона человека. Проксимальный отдел пищеварительной трубки: 1) формирующаяся верхняя челюсть; 2) нижняя челюсть, 3) многослойный плоский неороговевающий эпителий; 4) закладка зуба, 5) проксимальный отдел пищеварительной трубки; 6) эмалевый орган; 7) зубной сосочек; 8) зубной мешочек; 9) формирующаяся кость нижней челюсти. Окраска гематоксилином и эозином. Ув. х200

rev5.tif

Рис. 5. Полость рта эмбриона человека: 1) формирующаяся нижняя челюсть, 2) цилиндрический эпителий; 3) многослойный плоский неороговевающий эпителий; 4) закладка зуба, 5) проксимальный отдел пищеварительной трубки; 6) эмалевый орган; 7) зубной сосочек; 8) зубной мешочек; 9) формирующаяся кость зубной альвеолы; 10) Меккелев хрящ; 11) губа. Окраска гематоксилином и эозином. Ув. х200

Наши результаты показали, что формирующийся эмалевый орган имеет несимметричное строение вследствие разных топографических особенностей и взаимоотношений его пролиферирующих структур с эктомезенхимой, прилежащей к эктодермальному эпителию, и части эмалевого органа, располагающейся вблизи выстилки передней кишки. Наклонный вектор роста эмалевого органа также связан с асимметричной пролиферацией клеток. Идентифицируются участки образующейся костной ткани нижней челюсти. Базальный слой эктодермального эпителия, врастающего в мезенхиму нижней челюсти, образует внутренний и наружный слои эмалевого колпачка. В этот период отмечается неодинаковая толщина слоев клеток эмалевого органа, наибольшие значения которой отмечаются со стороны полости рта. Зубной мешочек в меньшей степени окружает формирующиеся структуры эмалевого органа со стороны преддверия полости рта. Это может быть связано с тем, что формирование эмали зуба с внутренней стороны полости рта и со стороны преддверия полости рта имеет отличия в развитии, как со стороны клеточной индукции, так и последующей дифференцировки клеток. D. Kaliboviс Govorko, T. Beсiс, (2010) с соавторами показали, что экспрессия Ki-67-маркера пролиферации, Bcl-2 и Bax протеина имеет значение в развитии зуба [8]. Асимметрия сохраняется и в последующую неделю (рис. 5).

Зубной стебелёк, или шейка зуба, покрыт со стороны преддверия рта базальным слоем эктодермальных кератиноцитов, со стороны собственно полости рта базальные клетки граничат с цилиндрическим эпителием проксимального отдела пищеварительной трубки. Граница перехода чётко идентифицируется, возможно, это связано с ингибированием пролиферации за счёт сигнальных молекул, секретируемых цилиндрическим эпителием и внутренними клетками зубного мешочка, распространяющимися на 5-й неделе до границы наружных эмалевых клеток и цилиндрического эпителия прoксимального отдела пищеварительной трубки

Известно, что головной конец зародыша не содержит мезодермы, поэтому мезенхима в головном отделе представлена двумя типами: эктомезенхимальной и мигрирующей из нервного гребня [9]. Таким образом, в морфогенезе зуба человека участвует большее количество клеток, чем принято считать на современном этапе.

Нами отмечено, что эмалевый орган содержит многочисленные хромофобные клетки, имеющие вытянутую веретеновидную форму. Их отростки пронизывают слой внутренних клеток эмалевого органа и формируют мембрану, обособляющие эмалевый орган от зубного сосочка, вдающегося в него. Физиологическое значение мембраны может быть связано с ограничением миграции клеток энтомезенхимы. Вторая мембрана идентифицируется на границе слоя энамелобластов и пульпы эмалевого органа. Наиболее крупные хромофобные клетки располагаются в той части формирующегося зуба, которая является наружной, обращённой в преддверие рта.

Хромофобные клетки образуют капсулу вокруг зубного сосочка, располагаются в его паренхиме и представляют большую часть клеток, формирующих зубной мешочек. Нами отмечено присутствие крупных хромофобных клеток на границе места перехода многослойного плоского эпителия и его базальных кератиноцитов в цилиндрический эпителий проксимального отдела развивающейся пищеварительной трубки. В эпителии слизистой оболочки разных отделов полости рта, который в дальнейшем превратится в частично ороговевающий и неороговевающий, возникают различия в экспрессии цитокератинов. Возможно, это связано с тем, что в неороговевающем эпителии, выстилающем ротовую полость, базальные кератиноциты располагаются на мембране, представленной хромофобными веретеновидными клетками, происхождение которых может быть связано с нервным гребнем, или эктомезенхимой. Следует отметить, что мембрана из веретеновидных клеток лучше идентифицируется в эпителии и вокруг эмалевого органа, отсутствует в проксимальном отделе пищеварительного канала. S. Panneer Selvam, I. Ponniah (2018) пришли к выводу, что экспрессия амелобластина в зародышах зуба человека связана с дифференцировкой и минерализацией [10].

Несмотря на известные модели экспрессии в геноме высоко пролиферативных дифференцирующихся амелобластов и одонтобластов на ранних и поздних стадиях развития эмалевого органа генов IGF-2, IGF-1R, IGF-2R и PTEN, имеющих важное значение в морфогенезе коронки зубов человека, выращивание искусственных зубов in vitro пока затруднено и не представляется возможным не только для человека, но и для животных [11, 12]. Неэффективное использование известных сигнальных молекул, ростовых факторов и биологически активных веществ в клеточных технологиях по выращиванию зубов диктуют изучение развития зубов и поиск новых не известных на современном этапе данных.

Заключение

Таким образом, развитие зуба является результатом последовательных и взаимных взаимодействий между эпителием полости рта и нейрональной мезенхимы. В нашем исследовании основное внимание мы уделили неамелобластным слоям ЭО: поверхностным слоям, звездчатому ретикулуму пульпы эмалевого органа и наружному эмалевому эпителию, отметив, что в структуру эмалевого органа произошла миграция эктомезенхимоцитов веретеновидной формы, хромофобных, простирающихся перпендикулярно мембране энамелобластов. Открытие новых фактов в формировании корня зуба, коронкового дентина и эмали указывает на возможность утверждения новой концепции: коронка зуба и корень имеют различные механизмы индукции направления дифференцировки и специализации клеток. Эти данные показывают, что слои неамелобластов ЭО играют несколько ролей во время одонтогенеза, включая поддержание нескольких резервуаров стволовых клеток, играют важную роль во время морфогенеза корня зуба, стабилизирующую функцию для слоя амелобластов. Формирование зубных структур или зубов, как органов, в эксперименте in vitro зависит от знания стволовых клеток и требует взаимодействия всех межклеточных и молекулярных факторов, которые приводят к образованию не только специфичных для зубов твердых тканей, дентина, цемента и эмали, но и пульпы. Хотя мезенхимальные стволовые клетки различного происхождения были широко изучены в их способности образовывать дентин in vitro, информации об успешном использовании эпителиальных стволовых клеток в выращивании зубов пока нет. Одонтогенный потенциал находится в зависимости от эпителиальных стволовых клеток, необходимых как для инициации образования зуба, так и для производства эмалевого матрикса. Эмбриональные постнатальные или даже взрослые стволовые клетки обладают огромным регенеративным потенциалом, но их применение в стоматологической практике все еще проблематично и ограничено из-за различных неизвестных параметров развития зубов. Недостаточность информации о клеточных взаимодействиях в развитии зубов человека влияет на высокий риск отторжения и непредсказуемость поведения стволовых клеток, длительный период прорезывания зубов, не обеспечивают морфогенез заданной формы и соответствующей структуры коронки.

Читайте так же:
Саморез для цементных плит

В современных работах о развитии зубов у человека в реальном развитии и in vitro показано, что постнатальные стволовые клетки пульпы человека, как и стволовые клетки эпителия слизистой рта, не обладают одонтогенным потенциалом или одонтогенной компетентностью. Мы связываем это с отсутствием в этих процессах хромофобных веретеновидных клеток, присутствие которых необходимо для индуцированного выращивания зубов.

Выводы

Результаты, полученные на материале эмбрионов человека, демонстрируют возможность сохранения одонтогенного потенциала в зубных эмбриональных тканях человека с определённым ансамблем клеток и будут иметь значение в перспективе в биоинженерных технологиях выращивания зубов человека. Технологии тканевой инженерии и регенеративной медицины, как перспективные методы лечения в стоматологии, обязательно должны учитывать хромофобные веретеновидные клетки, мигранты из нервного гребня и эктомезенхимы, участвующие в развитии зубов человека на самых ранних этапах эмбрионального развития. Возможно, эти клетки являются главными координаторами структуризации, дифференцировки и специализации формирующихся зачатков зубов у эмбрионов человека.

Работа выполнена при поддержке Научного фонда ДВФУ, в рамках государственного задания 17.5740/2017/6.7.

Функции эмали дентина цемента

У взрослого человека имеются постоянные зубы.

Зубы располагаются в виде двух симметричных дуг в области костей верхней и нижней челюсти. Их общее количество обычно равно 32, причем в каждом квадранте располагаются восемь зубов: два резца, один клык, два премоляра и три постоянных моляра. Двадцати постоянным зубам предшествуют молочные (временные) зубы; у остальных (постоянных моляров) молочные предшественники отсутствуют. В каждом зубе имеется часть, которая выступает над десной, — коронка — и находящиеся под десной корни (один или несколько), которые удерживают зуб в костной ячейке, известной как альвеола — по одной для каждого зуба.

Коронку покрывает исключительно твердая ткань — эмаль, а корни — другая обызвествленная ткань — цемент. Участок зуба, где сходятся эти две покрывающие его ткани, — шейка зуба. Основную массу зуба образует еще одна обызвествленная ткань — дентин. Дентин окружает пространство, известное как пульпарная полость, которое заполнено рыхлой соединительной тканью. В пульпарную полость входят корон-ковая часть (пульпарная камера) и корневая часть (корневой канал), которая протягивается к верхушке корня, где через отверстие (апикальное отверстие) входят и выходят кровеносные и лимфатические сосуды, а также нервы в пульпарной камере.

Периодонтальная связка представляет собой волокнистую соединительную ткань; пучки ее коллагеновых волокон проникают в цемент и альвеолярную кость, жестко фиксируя зуб в его костной ячейке (альвеоле).

Строение дентина зубов

Дентин — это обызвествленная ткань, превосходящая по твердости кость вследствие большего содержания солей кальция (70% сухого веса). В его состав входят, главным образом, фибриллы коллагена I типа, гликозаминогликаны, фосфопротеины, фосфолипиды и соли кальция, образующие кристаллы гидроксиапатита. Органическую основу дентина секретируют одонтобласты — клетки пульпы, которые выстилают внутреннюю поверхность зуба. Одонтобласты представляют собой узкие и вытянутые поляризованные клетки, которые вырабатывают органический матрикс только на поверхности дентина. Для них характерно строение поляризованных белок-секретирующих клеток с расположением секреторных гранул в апикальной части цитоплазмы и ядра — в базальной.

Одонтобласты образуют тонкие, разветвленные апикальные выросты, которые под прямым углом пронизывают всю толщу дентина, — отростки одонтобластов (волокна Томса). Эти отростки постепенно удлиняются по мере утолщения слоя дентина, проходя в узких каналах, которые известны как дентинные трубочки, и сильно ветвятся вблизи дентино-эмалевой границы. Диаметр отростков одонтобластов у клеточного тела составляет 3—4 мкм, но постепенно они становятся все тоньше в направлении дистальных концов, расположенных вблизи эмали или цемента.

Матрикс, который вырабатывают одонтобласты, первоначально необызвествлен и называется предентином. Минерализация развивающегося дентина начинается после того, как появляются покрытые мембраной матриксные пузырьки, вырабатываемые одонтобластами. Вследствие высокого содержания ионов кальция и фосфата, они способствуют отложению мелких кристаллов гидроксиапатита, которые растут и служат участками нуклеации (ядрами), обеспечивающими продолжающееся отложение минеральных веществ на окружающие коллагеновые фибриллы.

Дентин чувствителен к различным воздействиям, таким, как тепло, холод, травма и кислые значения рН, причем все эти воздействия воспринимаются как боль. Хотя пульпа богато иннервирована, дентин содержит лишь отдельные безмиелиновые нервные волокна, которые проникают в его внутреннюю (пульпарную) часть. В соответствии с гидродинамической теорией, различные воздействия могут вызвать перемещение жидкости внутри дентинных трубочек, которое стимулируют нервные волокна, расположенные вблизи отростков одонтобластов.

В отличие от кости, дентин длительное время сохраняется как минерализованная ткань после разрушения одонтобластов. Поэтому возможно сохранение зубов (путем лечения каналов), в которых пульпа и одонтобласты были разрушены инфекцией. В зубах взрослых разрушение эмалевого покрытия вследствие эрозии от изнашивания или зубного кариеса обычно вызывает реакцию одонтобластов, в результате которой они возобновляют синтез компонентов дентина.

Строение зубов. Гистология, функцииРезец в альвеоле нижней челюсти (сагиттальный срез, рисунок). Строение зубов. Гистология, функцииРазвивающийся зуб. Видны дентин и эмаль. Амелобласты (клетки, секретирующие эмаль) и одонтобласты (клетки, секретирующие предентин) располагаются в виде палисадов. Окраска: парарозанилин—толуидиновый синий. Среднее увеличение. Строение зубов. Гистология, функцииЗуб. Видны дентинные трубочки, в которых располагаются отростки одонтобластов. А — начальные участки вблизи эмали. Б — средние участки. Отростки ветвятся, давая более мелкие веточки. Большое увеличение.

Строение эмали зубов

Эмаль — самый твердый компонент тела человека. В ее составе примерно 96% неорганических веществ, до 1% — органических; остальные 3% приходятся на воду. Как и в других обызвествленных тканях, неорганический компонент эмали представлен, в основном, кристаллами гидроксиапатита. Если во время синтеза эмали присутствуют другие ионы (такие, как стронций, магний, свинец и фтор), они могут включаться в состав кристаллов или адсорбироваться ими.

В основе развития зубного кариеса лежит способность кристаллов эмали растворяться при кислых значениях рН, причем некоторые из ее кристаллов (например, фторапатит) менее подвержены растворению, чем гидроксиапатит.

Эмаль вырабатывается клетками эктодермального происхождения, тогда как другие структуры зуба развиваются из клеток мезодермы или нервного гребня. Органический матрикс эмали не содержит коллагеновых фибрилл; его образуют, по крайней мере, два гетерогенных класса белков — амелогенины и энамелины. Роль этих белков в организации минерального компонента эмали в настоящее время активно изучается.

Читайте так же:
Российский или турецкий цемент

Эмаль образуют удлиненные структуры в форме палочек или колонок — эмалевые призмы, которые связаны воедино межпризменной эмалью. Как межпризменная эмаль, так и эмалевые призмы образованы кристаллами гидроксиапатита; они различаются лишь ориентацией своих кристаллов. Каждая призма протягивается через всю толщину слоя эмали и имеет извитой ход; расположение призм в виде групп очень важно для обеспечения механических свойств эмали.

Матрикс эмали секретируют высокие столбчатые клетки — энамелобласты (амелобласты). В подъядерном участке их цитоплазма содержит многочисленные митохондрии, над ядром — грЭПС и хорошо развитый комплекс Гольджи. Каждый амелобласт имеет апикальный вырост — отросток Томса, в котором находятся многочисленные секреторные гранулы, содержащие белки — компоненты матрикса эмали. После завершения синтеза эмали амелобласты образуют защитный эпителий, который покрывает коронку до прорезывания зуба. Этот защитный слой играет очень важную роль, предотвращая развитие ряда дефектов эмали.

Строение пульпы зуба

Пульпа зуба состоит из рыхлой соединительной ткани. Ее главными компонентами являются одонтобласты, фибробласты, тонкие коллагеновые фибриллы и основное вещество, содержащее гликозаминогликаны.

Пульпа— ткань с богатой иннервацией и кровоснабжением. Кровеносные сосуды и миелиновые нервные волокна проникают в нее через апикальное отверстие и разделяются на многочисленные ветви. Некоторые нервные волокна теряют свои миелиновые оболочки и на небольшое расстояние заходят в дентинные трубочки. Нервные волокна пульпы передают болевые ощущения — единственный вид чувствительности, обнаруженный в зубах.

Строение парадонта. Пародонт включает структуры, ответственные за удержание зубов в костях верхней и нижней челюсти. В его состав входят цемент, периодонтальная связка, альвеолярная кость и десна.

Строение цемента зубов

Цемент покрывает дентин корня зуба и по своему составу сходен с костью, хотя в нем отсутствуют гаверсовы системы и кровеносные сосуды. Он толще в апикальном участке корня, где содержатся цементоциты — клетки, имеющие вид остеоцитов. Подобно остеоцитам, они заключены в лакуны; однако, в отличие от них, цементоциты не связаны между собой посредством канальцев, и их питание осуществляется со стороны периодонтальной связки4. В отличие от костной ткани, цемент очень лабилен и реагирует на воздействие напряжений разрушением старой ткани или выработкой новой. Непрерывное образование цемента в области верхушки корней компенсирует физиологический износ зубов и поддерживает тесный контакт между корнями зубов и их альвеолами.

Активность метаболизма цемента ниже, чем у кости, потому что он не снабжен кровеносными сосудами. Эта особенность позволяет осуществлять перемещение зубов с помощью ортодонтических приспособлений, не вызывая существенной резорбции корня зуба.

Строение зубов. Гистология, функцииПульпа зуба. Видны многочисленные фибробласты, в верхней части — одонтобласты, от которых отходят отростки. Слой предентина окрашен в синий цвет, а дентин — в красный. Окраска по Маллори. Сверху: среднее увеличение; снизу — большое увеличение. Строение зубов. Гистология, функцииА — область прикрепления зуба к альвеолярной кости посредством периодонтальной связки. Поскольку данный материал был получен от молодого животного, кость подвергается непрерывной перестройке, адаптируясь к прорезыванию зуба; этим объясняется присутствие остеокластов. Связка образуется ориентированными фибробластами. Окраска: парарозанилин—толуидиновый синий. Среднее увеличение. Строение зубов. Гистология, функцииБ — периодонтальная связка (поляризационная микроскопия с пикросириусом). Выявляются ориентированные пучки коллагена (желтые), проникающие в альвеолярную кость. Среднее увеличение.

Строение периодонтальной связки зубов

Периодонтальная связка образована особым видом соединительной ткани, волокна которой проникают в цемент зуба и связывают его с костными стенками зубной альвеолы, в то же время допуская ограниченные движения зуба. Ее волокна организованы таким образом, чтобы выдерживать давления, создаваемые во время жевания. Благодаря этому не происходит непосредственной передачи давления на кость, в результате чего могла бы возникнуть ее ограниченная резорбция.

Коллаген периодонтальной связки по своим свойствам напоминает таковой в незрелой ткани. Для него характерны высокая скорость обновления (что было показано методом авторадиографии) и повышенное содержание растворимого коллагена. Пространство между волокнами связки заполнено гликозаминогликанами.

Вследствие высокой скорости обновления коллагена в периодонтальной связке, процессы, влияющие на общий белковый синтез или только на синтез коллагена, например, белковая недостаточность или дефицит витамина С (цинга), могут вызывать атрофию этой связки. В результате этого зубы начинают шататься в своих альвеолах; в тяжелых случаях они выпадают. Эта относительная пластичность периодонтальной связки важна, поскольку она позволяет с помощью ортодонтических процедур произвести выраженные изменения положения зубов во рту.

Строение альвеолярной кости зубов

Альвеолярная кость непосредственно связана с периодонтальной связкой. Это — кость незрелого типа (первичная кость), в которой отсутствует упорядоченное расположение коллагеновых волокон, характерное для типичного пластинчатого строения кости взрослых. Многие из коллагеновых волокон периодонтальной связки собраны в пучки, которые проникают в эту кость и в цемент, образуя мостик, соединяющий эти две структуры (шарпеевские волокна). Кость вблизи корней зубов образует альвеолу. Сосуды прободают альвеолярную кость и проникают в периодонтальную связку по ходу корня зуба (перфорирующие сосуды). Некоторые сосуды и нервы подходят к апикальному отверстию корня и направляются в пульпу.

Строение десны зубов

Десна представляет собой слизистую оболочку, плотно связанную с надкостницей верхней и нижней челюстных костей. Она состоит из многослойного плоского эпителия и собственной пластинки, образующей многочисленные соединительнотканные сосочки. Высокоспециализированная часть этого эпителия — эпителий прикрепления — связан с зубной эмалью посредством кутикулы, которая напоминает толстую базальную пластинку и образует эпителиальное прикрепление (Готтлиба). Эпителиальные клетки прикреплены к этой кутикуле полудесмосомами. Между эмалью и этим эпителием находится десневая борозда — небольшое (до 3 мм) углубление, окружающее коронку зуба.

Глубина десневой борозды, которую измеряют в ходе клинического обследования, имеет очень большое значение, так как может быть показателем заболевания пародонта.

Строение зубного аппарата

Строение зубного аппарата

Зубные органы являются составной частью жевательного аппарата.

Жевательный аппарат взрослого человека содержит 32 зубных органа (по 16 на верхней и нижней челюсти).

Зубной орган состоит из зуба; луночки и прилегающей к ней челюсти, покрытой слизистой оболочкой десны; связочного аппарата, удерживающего зуб в луночке; сосудов и нервов.

В зубе различают:

  • коронку (утолщенную часть, выступающую в полость зуба);
  • шейку зуба (прилегающую к коронке суженную часть, окруженную десной);
  • корень (часть зуба, расположенную внутри луночки челюсти).
Читайте так же:
Чем удалить цементный раствор с стекла

ПУЛЬПА ЗУБА

Внутри зуба имеется полость, которая напоминает форму коронки, а в корне зуба продолжается в виде канала. Канал корня заканчивается на верхушке корня зуба отверстием. Полость зуба заполнена рыхлой соединительной тканью, богатой сосудами и нервами, — пульпой. В пульпе зуба различают коронковую и корневую части. Пульпа коронки зуба представлена рыхлой соединительной тканью с нежной сетью коллагеновых и преколлагеновых волокон с большим количеством клеточных элементов. В пульпе корня зуба коллагеновые структуры более плотные, толще и ориентированны продольно по ходу сосудисто-нервного пучка.

По клеточному составу в пульпе различают: периферический, субодонтобластический и центральный слои.

Периферический слой состоит из специализированных клеток — одонтобластов, принимающих участие в обменных процессах эмали и дентина. Они расположены в несколько рядов.

Одонтооласт имеет вытянутую грушевидную форму. Он имеет периферический протоплазматический отросток (или дентинный), который проходит в дентинной трубочке до дентиноэмалепого соединения, и короткие боковые отростки, анастомозирующие с соседними клетками на ранних стадиях дифференцирования.

Субодонтобластический и центральный слои состоят из мелких малодифференцированных звездчатых клеток, соединенных между собой короткими отростками. В пульпе много фибробластов, участвующих в образовании фиброзной капсулы, ограничивающей очаг воспаления.

В центральных слоях выделяют клетки цитоплазмы — гистиоциты. При воспалении они приобретают способность передвигаться и фагоцитировать, носят название макрофагов.

Кровоснабжение пульпы обеспечивают кровеносные сосуды, проникающие в нее через отверстие верхушки корня зуба и через дополнительные каналы из периодонта. Лимфатическая система в пульпе представлена в виде щелей, капилляров, сосудов. Отток лимфы от пульпы происходит в поднижнечелюстные и подбородочные лимфатические узлы. Артериальные стволы сопровождают вены. Сосуды пульпы имеют многочисленные анастомозы. Через верхушечное отверстие проходят чувствительные мякотные и безмякотные волокна тройничного нерва, которые иннервируют пульпу, образуя сплетения.

Пульпа зуба несет трофическую, защитную и пластическую функцию. Трофическая функция осуществляется за счет развитой сети кровеносных и лимфатических сосудов; защитная — за счет клеток-гистиоцитов, плазматических; пластическая — это участие пульпы в образовании дентина.

Основную массу зуба составляет дентин, который окружает полость зуба. В области коронки зуба дентин покрыт ярко-белой эмалью. Дентин корня покрыт цементом.

ПЕРИОДОНТ

Корень зуба удерживается в луночке соединительно-тканными волокнами, которые составляют корневую оболочку или периодонт.

Периодонт расположен в узком щелевидном пространстве между корнем зуба и костью челюсти. Толщина периодонта составляет 0,15-0.25 мм. С возрастом, а также от механической нагрузки толщина периодонта изменяется и составляет 1,2-1,2 мм.

Основой соединительной ткани периодонта являются пучки межзубных и цементно-альвеолярных волокон, которые вплетаются, с одной стороны, в компактную пластину альвеолы, а с другой стороны — в цемент корня зуба. В области шейки зуба фиброзные волокна имеют почти горизонтальное направление, включают многочисленные коллагеновые волокна, циркулярно охватывающие пришеечную область (круговая связка). Верхушечный периодонт содержит больше рыхлой соединительной ткани и клеточных элементов. Фиброзные волокна в области верхушки зуба представлены более рыхлыми, нежными пучками и расположены радиально с помощью волокон зуб как бы подвешивается и фиксируется в костном ложе.

Кровоснабжение периодонта обильное, он имеет достаточно развитую лимфатическую сеть. Сосуды периодонта образуют несколько сплетений (наружное, среднее, капиллярное) в области корня. Клеточные элементы представлены фибробластами, тучными, плазматическими клетками, гистиоцитами, цементобластами, остеобластами, эпителиальными остатками новообразовательного эпителия. Основная функция периодонта — опорно-удерживающая. Кроме этого периодонт распределяет, регулирует давление на зуб (амортизирующая), обладает пластической функцией за счет клеточных элементов и барьерной функцией (благодаря своеобразию анатомического строения и устойчивости к неблагоприятным воздействиям внешней среды). Выделяется также рефлексогенная функция периодонта.

ПАРОДОНТ

Пародонт — это комплекс тканей, окружающих корень зуба, имеющих одну генетическую основу. В состав пародонта входят: десна, слизистая оболочка, покрывающая альвеолярную часть челюсти, кость альвеолы, периодонт.

ДЕНТИН

Дентин по своему строению напоминает грубоволокнистую костную ткань, состоящую из основного вещества, пронизанного большим количеством дентинных трубочек. Основное вещество дентина составляют коллагеновые волокна, между которыми находится аморфное склеивающее вещество. Наружный слой дентина (с радиальным расположением волокон) называется плащевым; внутренний слой с тангенциальным расположением волокон — околопульпарным. Дентинные трубочки (канальцы) имеют форму круглых, овальных трубочек. Они начинаются в полости зyба, волнообразно изгибаясь, проходят через толщину дентина и заканчиваются колбообразными вздутиями в области дентиноэмалевого соединения.

В просвете этих канальцев расположены дентинные отростки одонтобластов. В дентине содержится 70-72% неорганических веществ (в основном фосфат и карбонат кальция), а 28-30% составляет вода и органическое вещество (белки, жиры и углеводы).

Эмаль зуба
Эмаль зуба является самой твердой тканью человеческого организма. В области бугров коронки зуба находится наиболее толстый слой эмали, по направлению к пришеечной области толщина эмали уменьшается. Эмалевые призмы являются основным структурным образованием эмали. Эмалевая призма представляет собой гpaнeнoe цилиндрическое волокно, начинающееся в области дентиноэмалевого соединения.

Она, изгибаясь S-образно, проходит радиально и заканчивается на поверхности коронки зуба. Эмалевые призмы соединены в пучки (по 10-20), направлены радиально от дентиноэмалевого соединения к наружной поверхности. Толщина призм от 3 до 6 мкм. В каждой призме проходят тонкие цитоплазматические волокна, образующие органическую сеточку, в петлях которой располагаются кристаллы минеральных солей.

Эмалевые призмы и межпризменные пространства (при электронно-микроскопическом исследовании) состоят из строго ориентированных, в определенном порядке расположенных кристаллов гидроксиапатита, длина которых колеблется от 50 до 100 нм.

Большую часть эмали зуба составляют неорганическое вещество (95%), органическое (1,2%) и вода (3,8%). В эмали зуба содержится 96,5% минеральных солей, из которых около 54% составляют фосфор и кальций (17% и 37% соответственно), которые представлены кристаллами гидроксиапатита.

ЦЕМЕНТ ЗУБА

Цемент зуба покрывает корень и подразделяется на первичный и вторичный. Первичный (безклеточный) цемент прилежит непосредственно к дентину, покрывая боковые поверхности корня зуба. Вторичный (клеточный) содержит цементоциды, покрывает слой первичного цемента, локализуется лишь в области верхушки корня и на межкорневых поверхностях премоляров и моляров.

Основное вещество цемента представлено коллагеновыми волокнами, идущими в различных направлениях, большая часть которых идет в радиальном направлении. При некоторых патологических состояниях отмечается гиперцементоз (избыточное отложение слоев цемента на поверхности корня зуба). Цемент состоит из 68% неорганических и 32 % органических веществ.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector